咨询热线

020-82020406

ABOUT US
您当前所在位置:主页 > 新闻资讯 >

中国科大研制出一种智能靶向的磁共振探针

作者:财神线上官网更新时间:2021-02-19 04:46点击次数:字号:T|T

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  中国科学院紫金山天文台(中国科大天文与空间科学学院)2021年招收攻读博士学位研究生报名公告

  中国科学院紫金山天文台(中国科大天文与空间科学学院)2021年接收“推免生”章程

  2020年南昌大学-中国科学院稀土研究院“稀土专项”联合培养博士研究生“申请-考核”制招生公告

  近日,中国科学技术大学教授梁高林课题组研制出一种智能靶向Legumain(Lgmn)蛋白酶的19F磁共振探针,并在构建有肿瘤模型的斑马鱼上验证了其优异的靶向成像效果。相关研究成果发表在4月14日的ACSNano上,论文第一作者为课题组的博士生袁月。

  Lgmn是一种属于半胱氨酸蛋白酶C13家族的天冬酰胺内肽酶。它和炎症性疾病如动脉粥样硬化、中风和癌症等密切相关。并且Lgmn过表达在大多数肿瘤中,包括乳腺肿瘤、结肠肿瘤、前列腺肿瘤以及中枢神经系统肿瘤中。尽管Lgmn与很多恶性肿瘤关联紧密,但基质衍生Lgmn的确切作用仍然得不到完整的定义。这就需要更加灵敏的和生物兼容的方法来检测体外和体内的Lgmn活性。19F在体内极低的背景信号使得19FMRI具有很高的灵敏度和特异性,而核磁成像技术的强穿透性及无损等优点也使得19FMRI的研究得到越来越多的关注。但是19FMRI通常需要高剂量的探针来提供足够的信号,这就带来了剂量毒性的风险,并且需要耗费大量的化合物。因此发展出“智能”策略来降低探针剂量实现Lgmn靶向是十分必要的。

  研究人员报道了两种可以特异性检测Lgmn活性的19FNMR/MRI探针Cys(StBu)-Ala-Ala-Asn-Lys(FMBA)-CBT(1)及Ac-Ala-Ala-Asn-Cys(StBu)-Lys(FMBA)-CBT(2)。其中Ala-Ala-Asn是Lgmn的酶切底物,如下图所示,当探针1进入细胞内,胞内GSH会还原Cys上的双硫键,Cys和CBT之间则缩合并自组装成纳米粒子,继而导致19FNMR信号峰展宽,信号强度减小。在Lgmn蛋白酶的作用下,组成纳米粒子的二聚体被剪切断开,纳米粒子解组装呈游离单体,19FNMR信号峰得以重新恢复。因此这种on-off-on的过程可以用于相继检测GSH的浓度和Lgmn的活性。而对照探针2进入细胞后,19FNMR的信号是个on-on-off过程。利用这个“智能”策略和探针1,在中国科大教授胡兵课题组以及中科院合肥物质科学研究院强磁场科学中心研究员王俊峰课题组的帮助下,研究人员实现了斑马鱼体内Lgmn肿瘤的靶向核磁共振成像,显示该策略在肿瘤成像上有着极大的应用前景。

  上述研究得到苏州纳米科技协同创新中心、合肥物质科学技术中心重要方向项目培育基金和国家自然科学基金等支持。

  近日,中国科学技术大学教授梁高林课题组研制出一种智能靶向Legumain(Lgmn)蛋白酶的19F磁共振探针,并在构建有肿瘤模型的斑马鱼上验证了其优异的靶向成像效果。相关研究成果发表在4月14日的ACS Nano上,论文第一作者为课题组的博士生袁月。

  Lgmn是一种属于半胱氨酸蛋白酶C13家族的天冬酰胺内肽酶。它和炎症性疾病如动脉粥样硬化、中风和癌症等密切相关。并且Lgmn过表达在大多数肿瘤中,包括乳腺肿瘤、结肠肿瘤、前列腺肿瘤以及中枢神经系统肿瘤中。尽管Lgmn与很多恶性肿瘤关联紧密,但基质衍生Lgmn的确切作用仍然得不到完整的定义。这就需要更加灵敏的和生物兼容的方法来检测体外和体内的Lgmn活性。19F在体内极低的背景信号使得19F MRI具有很高的灵敏度和特异性,而核磁成像技术的强穿透性及无损等优点也使得19F MRI的研究得到越来越多的关注。但是19F MRI通常需要高剂量的探针来提供足够的信号,这就带来了剂量毒性的风险,并且需要耗费大量的化合物。因此发展出“智能”策略来降低探针剂量实现Lgmn靶向是十分必要的。

  研究人员报道了两种可以特异性检测Lgmn活性的19F NMR/MRI探针Cys(StBu)-Ala-Ala-Asn-Lys(FMBA)-CBT(1)及Ac-Ala-Ala-Asn-Cys(StBu)-Lys(FMBA)-CBT(2)。其中Ala-Ala-Asn是Lgmn的酶切底物,如下图所示,当探针1进入细胞内,胞内GSH会还原Cys上的双硫键,Cys和CBT之间则缩合并自组装成纳米粒子,继而导致19F NMR信号峰展宽,信号强度减小。在Lgmn蛋白酶的作用下,组成纳米粒子的二聚体被剪切断开,纳米粒子解组装呈游离单体,19F NMR信号峰得以重新恢复。因此这种on-off-on的过程可以用于相继检测GSH的浓度和Lgmn的活性。而对照探针2进入细胞后,19F NMR的信号是个on-on-off过程。利用这个“智能”策略和探针1,在中国科大教授胡兵课题组以及中科院合肥物质科学研究院强磁场科学中心研究员王俊峰课题组的帮助下,研究人员实现了斑马鱼体内Lgmn肿瘤的靶向核磁共振成像,显示该策略在肿瘤成像上有着极大的应用前景。

  上述研究得到苏州纳米科技协同创新中心、合肥物质科学技术中心重要方向项目培育基金和国家自然科学基金等支持。

财神线上官网